If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-56y=0
a = 8; b = -56; c = 0;
Δ = b2-4ac
Δ = -562-4·8·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-56}{2*8}=\frac{0}{16} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+56}{2*8}=\frac{112}{16} =7 $
| 5x-6=92 | | 3x^2+60x+900=0 | | n+23=31 | | 4x-4=-62 | | 3/8(x+8)=1/2(x+5)1/4 | | 17=9+2t | | 5/2m-45=10 | | 12x=10=142 | | 27=7+4t | | x-5.71=7.7 | | x^2+60=7x+10 | | 6x+3+20x=6 | | {2}{3}x-5{1}{4}=18{1}{5} | | 6x+14=5x+10 | | X(x+5)=414 | | {b}{4.5}-9=6.7 | | 8-3(x-1)=x-7 | | 5(4x-5)=5 | | 0.5x(6)=30 | | 6=4w+2w | | 2x+4x-3=11x+ | | -2=f/3-3 | | 27+6x=8.25x. | | H(x)=-4(x-3)(x-1) | | m-18/9=6 | | 3-p-7=2 | | 1Y-5y+8Y=9y+78Y | | 14=15y-8y | | 2/7-1/14x+2=42/14 | | -5x-8=-3x-4 | | 63+5x=6 | | 15-2x=6-3x |